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Abstract
In this paper, we study persistent charge and spin currents in the ground state of the
one-dimensional mesoscopic Hubbard ring with repulsive interaction based on its Bethe-ansatz
solution. We find that the persistent charge current is suppressed by the on-site Coulomb
interaction more significantly at half-filling than away from half-filling. As the system size
increases the charge current decays exponentially as I ∼ L−1e−L/ξ in the half-filling case and
decays in a power law away from the half-filling case. We also find that the persistent spin
current is suppressed by the on-site Coulomb interaction, and it decays algebraically as the
system size increases both at half-filling and away from half-filling.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The transport properties of strongly correlated systems
have attracted great theoretical and experimental attention
for more than 20 years. Low-dimensional systems show
some deviations from the usual Fermi liquid quasi-particle
description since electron–electron correlation plays an
important role in these systems [1, 2]. Byers and Yang [3]
pointed out that a small metal ring pierced by a magnetic flux
carries a persistent charge current, which never decays even in
the presence of an impurity in the system. This phenomenon is
later verified by corresponding experiments.

The persistent charge current in mesoscopic metallic
and semiconducting rings pierced by a magnetic flux
has been widely studied both experimentally [4–8] and
theoretically [9–14]. For mesoscopic systems, the quantum
coherence of electrons is very strong and the persistent current
in a mesoscopic ring strongly depends on the system size.
To avoid applying an uncontrolled approximation to study the
quantum coherence in mesoscopic systems, people usually
resort to exactly solvable models, such as the one-dimensional
Heisenberg model and Hubbard model. These two models
are used as effective models for the study of the transport
properties in low-dimensional systems.

The one-dimensional Hubbard ring is one of the simplest
models of interacting electrons on a lattice [15]. In one
dimension, the model is exactly solvable by the Bethe-
ansatz method [16–18]. In experiments, the one-dimensional

Hubbard model well describes optical properties of one-
dimensional conductors such as TTF-TCNQ [19], various
aromatic molecules, and systems of connected quantum
dots [20]. It is also very interesting that the model might
be helpful in analyzing the physics of the Aharonov–Bohm
effect in mesoscopic metal rings [4]. Recently, several groups
have studied the properties of the microscopic and mesoscopic
Hubbard rings penetrating a magnetic flux, and in particular
the persistent charge current in the one-dimensional Hubbard
rings induced by the magnetic flux has been examined [20–25].
With the development of the spintronics, the spin degree of
freedom becomes more and more important. The properties
of the persistent spin current in the Hubbard ring havelso been
studied [22, 26].

In this paper, we study the properties of the charge
and spin persistent currents in the ground state of the
one-dimensional Hubbard ring pierced by a spin-dependent
magnetic flux. By solving the corresponding Bethe-ansatz
equations numerically, we find that the on-site Coulomb
interaction always suppresses both the charge and spin
persistent currents. The persistent charge current displays an
exponential decay Ic ∼ L−1e−L/ξ as the system size increases
at half-filling and shows a power law away from the half-filling
case, while the persistent spin current decreases algebraically
as the system size increases both at half-filling and at away
from half-filling, i.e. Is ∼ 1/L.

The paper is organized as follows. In section 2,
we introduce the one-dimensional Hubbard model with
spin-dependent Peierls phase factors and the corresponding
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Bethe-ansatz solution in detail. In section 3, we study the
persistent charge current and discuss the effects caused by the
on-site interaction and the system size. In section 4, we study
the persistent spin current for various on-site interactions and
system sizes. Finally, we summarize our results in section 5.

2. The model and its Bethe-ansatz solution

We consider now the Hamiltonian of the one-dimensional
Hubbard ring. We impose periodic boundary conditions and
penetrate the system by a spin-dependent flux φσ . The later
could be represented by a spin-dependent vector potential
Aσ = (hc/e)φσ/L, which modifies the hoppng term along
the chain by the Peierls phase factor: t → te±i φσL (the sign
depends on the hopping direction of the electrons). Following
such a procedure, the Hamiltonian reads

H = −t
L∑

j=1

∑

σ=↑,↓
(c†

j,σc j+1,σ e−i φσL + H.c.)+ U
L∑

j=1

n j,↑n j,↓.

(1)
Here the operator c†

j,σ (c j,σ ) creates (annihilates) an electron

with spin projection σ =↑,↓ at site j and n j,σ = c†
j,σc j,σ

is the number operator at the same site. t is the hopping
integral between two nearest neighboring sites; U > 0 is
the on-site Coulomb repulsive interaction when two electrons
with different spins occupy the same site; L is the system
length. Note that the energy spectrum is invariant under the
replacement of t by −t [16]. We set t = 1 throughout this
paper.

The charge and spin current operators of the model are
defined by [23, 29]

Jρ = ei

L

L∑

j=1

∑

σ

(c†
j,σc j+1,σ e−i φσL − c†

j+1,σc j,σ ei φσL ), (2)

and

Jσ = i

2L

L∑

j=1

∑

σ

σ (c†
j,σ c j+1,σ e−i φσL − c†

j+1,σc j,σ ei φσL ), (3)

respectively, where φσ is in units of flux quanta φ0 = hc/e.
The flux can be gauged out of the Hamiltonian (1), so
that solving the Schrödinger equation in the presence of the
magnetic flux with a periodic boundary condition is equivalent
to that in the absence of the magnetic flux but with a twisted
boundary condition for the wavefunctions [3], i.e.

�(x1, x2, . . . , xi + L, . . .) = eiφ�(x1, x2, . . . , xi , . . .). (4)

The Hamiltonian (1) can then be solved by the nested
Bethe-ansatz method, and lead to the following Lieb–Wu
equations [16, 22]:

eik j L = eiφ↑
M∏

β=1

sin k j −�β + iu

sin k j −�β − iu
, j = 1, 2, . . . , Nc (5)

ei(φ↓−φ↑)
Nc∏

j=1

�α − sin k j + iu

�α − sin k j − iu
= −

M∏

β=1

�α −�β + 2iu

�α −�β + 2iu
,

α = 1, 2, . . . ,M. (6)

Here u = U/4, Nc is the number of electrons and M is the
number of electrons with spin down. The two sets of variables
{k j} and {�α} are the quasi-momentum and spin rapidities,
respectively.

Taking the logarithm of equations (5) and (6), we arrive at
the following transcendental equations [22]:

k j L = 2π I j + φ↑ + 2
M∑

β=1

tan−1

(
�β − sin k j

U/4

)
, (7)

2
Nc∑

j=1

tan−1

(
�α − sin k j

U/4

)
= 2π Jα + φ↓ − φ↑

+ 2
M∑

β=1

tan−1

(
�α −�β

U/2

)
. (8)

Here {I j} and {Jα} are quantum numbers (integers or half-
odd integers). All the energy eigenstates associated with the
Bethe-ansatz solution are described by different occupancy
configurations of the quantum numbers appearing in the
coupled transcendental equations (7) and (8). {I j } describes the
charge degrees of freedom and {Jα} describes the spin degrees
of freedom. 2{I j} are even (odd) integers for even (odd) M
and 2{Jα} are even (odd) for odd (even) N − M . For the
ground state, the quantum number configuration is described
by a continuous symmetrical sequence centered around the
origin [16],

I j = − Nc − 1

2
,− Nc − 3

2
, . . . ,

Nc − 1

2
; (9)

Jα = − M − 1

2
,− M − 3

2
, . . . ,

M − 1

2
. (10)

The energy and momentum eigenvalues are given by [16]

E(φ) = −2
Nc∑

j=1

cos k j , (11)

P = 2π

L

(
Nc∑

j=1

I j +
M∑

α=1

Jα

)
. (12)

There are two species of particles, spin up and spin down
electrons, in the system. The boundary phase angles for these
two species of particles are treated as independent parameters:
φ↑ and φ↓. One can solve the transcendental equations for
given φ↑ and φ↓. To obtain the charge persistent current Ic,
we let φ↑ = φ↓ = φ and calculate the energy shift due to the
magnetic flux. According to the Feynman–Hellmann theorem,
the persistent charge current is given by

Ic = 〈ψ0|Jρ |ψ0〉 = e
∂E0(φ)

∂φ
. (13)

If we take electron charge −e as the unit of the charge current,
then we have

Ic = −∂E0(φ)

∂φ
. (14)

On the other hand, setting φ↓ = −φ↑ = φ, the energy shift
gives the spin current. The persistent spin current is then given
by

Is = 〈ψ0|Jσ |ψ0〉 = −1

2

∂E0(φ)

∂φ
. (15)
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Figure 1. The persistent charge current Ic as a function of magnetic
flux φ for different on-site interactions with L = 66 at half-filling.

If we take electron spin 1/2 as the spin current unit, then we
have

Is = −∂E0(φ)

∂φ
. (16)

3. The persistent charge current

As formulated by Kohn [28] and Shastry [22], the Drude
weight, which is also called the charge stiffness, can be
calculated as

Dc = L

2

∂2 E0

∂φ2

∣∣∣∣
φ=φm

, (17)

where φm is the value at which the ground state energy E(φ)
is minimum. At zero temperature, a finite Drude weight
is characteristic of an ideal conductor. For an insulator,
whether it is a band insulator or Mott insulator, the Drude
weight vanishes. At finite temperatures, the Drude weight
also vanishes for normal conductors and a finite Drude weight
would be a signature of superconductors.

In the large-L limit and at half-filling, the flux dependence
of the ground state energy of the model is [27]

E0(φ)− E0(0) = 2Dc(L)

L
(1 − cosφ), (18)

where Dc(L) is the Drude weight. The persistent charge
current can be obtained as

Ic = −2Dc(L)

L
sinφ. (19)

Away from half-filling, the flux dependence of the ground
state energy in the large-L limit is [27]

E0(φ)− E0(0) = Dc(L)

L
φ2. (20)

The persistent charge current is

Ic = −2Dc(L)

L
φ. (21)

Figure 2. The persistent charge current as a function of magnetic
flux for different on-site interactions with L = 66 away from
half-filling. Electron density 〈n〉 = 2/5.

As is well known, the spectrum and the persistent current
have a flux periodicity 2π [3], so we consider the behavior
of the current in one period from −π to π . By solving the
Bethe-ansatz equations (7) and (8) numerically, we get the
ground state energy as a function of flux. Taking the numerical
derivative of the ground state energy with respect to flux, we
can obtain the ground state persistent charge current.

3.1. The persistent charge current and the
on-site interaction U

In figures 1 and 2, the persistent charge current Ic is plotted
versus the magnetic flux φ for a 66-site system at 〈n〉 = 1/2
and 2/5, respectively. Immediately we see that the behavior
of the persistent charge current at half-filling is distinct from
that at non-half-filling. In figure 1, we observe that the
persistent charge current has sine function dependence on the
magnetic flux. Moreover, with the increase of the on-site
Coulomb interaction U , the magnitude of persistent charge
current decreases rapidly. It nearly vanishes when U = 3.0. At
the electron density 〈n〉 = 2/5 we observe that the persistent
charge current scales with the magnetic flux linearly, as shown
in figure 2. This property, along with the fact that the increase
of the on-site Coulomb interaction U suppresses the persistent
charge current slowly, is consistent with equation (20). As is
well known, the half-filled Hubbard model is an insulator for
U > 0 since the one-electron excitation always displays an
energy gap, whereas it is metallic when the filling is smaller
than half. The latter could be described by the Luttinger
liquid theory and one can show that the persistent current is
proportional to the flux.

The behavior of the persistent charge current as a function
of on-site Coulomb repulsive interaction is presented in
figure 3 for various filling conditions. As shown, the persistent
charge current decreases much faster at half-filling than
away from half-filling with the increase of on-site Coulomb
interaction and it vanishes in the large U limit at half-filling.

3
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Figure 3. The behavior of the charge persistent current Ic as a
function of the reciprocal of on-site Coulomb interaction 1/U at
L = 66 for different electron densities when φ = −0.8π .

However, if the filling is smaller than half, the persistent charge
current decreases slowly with the increase of on-site Coulomb
interaction, and does not tend to zero even if U is very large.
The reason is that the model is metallic away from half-filling.
To examine the effect of the on-site Coulomb interaction on the
persistent charge current quantitatively, we show in figure 4 the
persistent current for electron density 〈n〉 = 1/2, from which
we extract the dependence of the persistent charge current Ic

on U . We find that at half-filling the charge current varies as
I ∼ e−U2/ξ with ξ � 1. The parameter ξ is carefully adjusted
to get a best fit of the data in figure 4.

3.2. The persistent charge current and the system size L

In mesoscopic systems, the persistent current is greatly
dependent on the system size. The size dependence of the
mesoscopic ring can be used to determine different phases,
such as metal or insulator [29]. A perfect metal will be
characterized by the persistent charge current scaling as 1/L,
while for an insulator the charge persistent current decays
exponentially, i.e. Ic ∼ L−1e−L/ξ , where ξ is the localization
length.

Figure 4. Logarithm of the charge persistent current ln(Ic) versus U 2

at half-filling with system size L = 66 when φ = −0.8π .

Figure 5. The persistent charge current Ic versus magnetic flux φ at
half-filling for several system sizes L , respectively, when the on-site
Coulomb interaction U = 2.0.

Firstly, we examine the size dependence for the free
fermions of the model (U = 0). The ground state energy of
the model when U = 0 is

E(φ) = −2
cos(φ/L)

sin(π/L)
. (22)

We take L = 4k + 2 to avoid energy degeneracy. Then the
charge persistent current for the free fermions of the model is
given by

Ic(φ) = 2

L

sin(φ/L)

sin(π/L)
. (23)

So we can find that the size dependence of the persistent charge
current for the free fermion model scales as 1/L in large L.
This fact verifies that the system is metallic at U = 0.

Figures 5 and 6 show the behavior of the persistent
charge current of the system as a function of the magnetic

4
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Figure 6. The persistent charge current Ic versus magnetic flux φ
away from half-filling for several system sizes L , respectively, when
the on-site Coulomb interaction U = 2.0. Electron density
〈n〉 = 2/5.

Figure 7. Logarithm of the charge persistent current ln(Ic L) as a
function of the number of sites L at half-filling, where φ = 0.6π , for
on-site interaction U = 2.0, 2.5 and 3.0 respectively. The lines
represent I ∼ L−1e−L/ξ , with ξ dependent on U .

flux threading the ring at half-filling and away from half-
filling respectively for several system sizes. We find that the
charge current has a sine function form with the magnetic
flux threaded at half-filling, while it is a linear function
away from half-filling. With the increase of system sizes,
the magnitude of the charge persistent current decreases
monotonically both at half-filling and away from half-filling.
To examine the conducting behavior of the system at different
filling conditions, we present the persistent charge current as
a function of the system sizes for different values of on-site
Coulomb interaction, for the half-filling case in figure 7 and
away from the half-filling case in figure 8, from which we can
extract the dependence of the charge current Ic on the size
of the system. We observe, from figure 7, that the persistent
charge current varies as Ic ∼ L−1e−L/ξ , with ξ � 31.0, 14.2
and 8.4 for U = 2.0, 2.5 and 3.0, respectively at half-filling.

Figure 8. Logarithm of the charge persistent current ln(Ic) as a
function of the number of sites ln(L) away from half-filling, where
φ = −0.8π , for on-site interaction U = 2.0 and 3.0 respectively.
Electron density 〈n〉 = 2/5. The lines represent I ∼ L−1+δ, where δ
is a small number.

Figure 9. The persistent spin current Is versus magnetic flux φ at
L = 66 for different on-site Coulomb interactions U at half-filling.

The localization length can be given by the slope of the straight
line in figure 7, which is obtained by performing the best fit of
the data in the figure 7 on a plot of ln(Ic L) versus the size
number L. Meanwhile, one can see that the localization length
decreases with the increase of the on-site Coulomb repulsive
interaction. Away from the half-filling case, we can see, from
figure 8, that the charge current decreases with the system sizes
in a power law behavior, Ic ∼ L−1+δ , δ = −0.001,−0.002 for
U = 2.0, 3.0, respectively, which verifies the Hubbard ring is
a charge conductor away from half-filling.

4. The persistent spin current

4.1. The persistent spin current and the on-site interaction U

Figures 9 and 10 show the persistent spin current Is versus
the magnetic flux φ for various on-site coulomb interactions

5
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Figure 10. The persistent spin current Is versus magnetic flux φ at
L = 66 for different on-site Coulomb interactions U away from
half-filling. Electron density 〈n〉 = 2/5.

Figure 11. The persistent spin current Is versus the reciprocal of the
on-site Coulomb interaction 1/U at L = 66 for the electron density
〈n〉 = 1/2, 2/5 and 1/3 respectively when φ = −0.8π .

U , and for the electron density 〈n〉 = 1/2 and 〈n〉 = 2/5
respectively. We see that the behavior of the spin current is
different from that of the charge current both at half-filling and
away from half-filling, which is neither a sine dependence on
the magnetic flux nor a linear function of magnetic flux. We
observe that the on-site Coulomb interaction also suppresses
the persistent spin current both at half-filling and away from
half-filling. Moreover, we can see that the spin current
is insensitive to the electron density of the model. This
phenomenon is obviously different from the behavior of the
charge current.

To study the effect of on-site Coulomb interaction on the
persistent spin current, we present the spin current of the model
as a function of the on-site Coulomb interaction at electron
density 〈n〉 = 1/2, 2/5 and 1/3 respectively in figure 11.
We observe that with the increase of the on-site Coulomb

Figure 12. The persistent spin current Is versus the magnetic flux φ
at half-filling for several system sizes when on-site Coulomb
interaction U = 2.0.

Figure 13. The persistent spin current Is versus the magnetic flux φ
away from half-filling for several system sizes when on-site
Coulomb interaction U = 2.0.

interaction U the persistent spin current always decreases,
both at half-filling and away from half-filling. Moreover, the
persistent spin current tends to respond more sensitively at
higher filling when U increases. Meanwhile, we find that the
persistent spin current does not tend to zero even when U is
very large, which is true both at half-filling and away from
half-filling. This is because the model effectively becomes a
Heisenberg model when U tends to infinity. The persistent spin
current exists in the Heisenberg model, which has been studied
by many people [30, 31].

4.2. The persistent spin current and the system size L

We present the persistent spin current of the system as a
function of the magnetic flux for several sites when U = 2.0
for half-filling and away from half-filling in figures 12 and 13,
respectively. We find that, with the increase of the number

6
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Figure 14. Logarithm of Is versus L at half-filling for U = 2.0 and
3.0 respectively when φ = −0.8π . The lines represent Is ∼ L−1+δ ,
where δ is a small number.

of sites, the persistent spin current decreases gradually both
at half-filling and away from half-filling.

To examine the spin conducting properties of the system,
we do finite size scaling of the spin current. Figures 14 and 15
present the persistent spin current of the model as a function
of the system sizes for half-filling and away from half-filling
respectively. The spin current decreases with the system size
as L−1+δ at half-filling, with δ = 0.01 and 0.02 for U = 2.0
and 3.0 respectively. The exponent δ is obtained as the slope
of the straight fitting line in figure 14. The spin current decays
with the system sizes as L−1+δ away from half-filling, with
δ = 0.02 and 0.03. The exponent δ is obtained from the best
fit of the data in figure 15.

5. Summary

We have studied the behavior of the persistent charge current
and persistent spin current on a mesoscopic ring pierced by
a spin-dependent magnetic flux. By solving the Bethe-ansatz
equations of the one-dimensional Hubbard model numerically,
we calculated the persistent charge current and persistent spin
current of the ground state as a function of the magnetic
flux. Then we study the effect of both the on-site Coulomb
repulsive interaction and the system size on the persistent
currents. The behavior of the charge persistent current at half-
filling is quite different from that away from half-filling. The
persistent charge current has sine function form with respect
to the magnetic flux at half-filling, while it is a linear function
away from half-filling. We also find that the persistent charge
current shows a dominant exponential decay, I ∼ L−1e−L/ξ ,
in the half-filling case with the number of sites of the system
while it shows a power law decay, L−1+δ , away from half-
filling. The persistent spin current also decreases with the
increase of the on-site Coulomb interaction. The behavior of
the persistent spin current is insensitive to the electron density
of the system, and it decays as L−1+δ with the system size both
at half-filling and away from half-filling.

Figure 15. Logarithm of Is versus L away from half-filling for
U = 2.0 and 3.0 respectively when φ = −0.8π . The lines represent
Is ∼ L−1+δ, where δ is a small number.
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